
A Journey in Functional Programming
An introduction to Haskell

Davide Spataro1

1Department of mathematics And Computer Science
Univeristy of Calabria

October 14, 2015

Table of contents I

Introduction - Functional Programming
Scope Of The Talk
Functional Programming
Tools and Installation
Toolbox - Hello world(s)

Basics - Syntax
Arithmetic And Boolean algebra
Guards, where, let
if and case construct
Ranges
List
Lambda Functions

Coding - Problems on Lists
Last element
kth element
Palindrome List

Table of contents II

Problem on Numbers
Primality Test
Greatest common divisor
Euler’s torient

Find Best Variance - Stock Data
I/O - Find Best Variance

Coding - Project Euler Problem 1
Problems 1

Coding - Project Euler Problem 26
Problems 26

Section 1

Introduction - Functional Programming

How many of you are capable of
writing (correct) quicksort in an
imperative language at the first

try?

All Haskell programmers are!

What does this code do?

void function (int *a, int n) {

int i, j, p, t;

if (n < 2)

return;

p = a[n / 2];

for (i = 0, j = n - 1;; i++, j--) {

while (a[i] < p)

i++;

while (p < a[j])

j--;

if (i >= j)

break;

t = a[i];

a[i] = a[j];

a[j] = t;

}

function(a, i);

function(a + i, n - i);

}

. . . and this?

function ::(Ord a) => [a] -> [a]

function [] = []

function (x:xs) = (function l) ++ [x] ++ (function g)

where

l = filter (<x) xs

g = filter (>=x) xs

I No indices

I No memory/pointer management

I No variable assignment

Functional Programming

Definition and Intuitive idea

I Computation is just function evaluation
6= program state manipulation.

I Based on λ−calculus that is an alternative
(to set theory) and convenient
formalization of logic and mathematics for
expressing computation

I Logic deduction ⇔ λ−calculus thanks to
the Curry-Howard correnspondence.

I A program is a proof!

I Heavily based on Category Theory (Monad,
Functor, etc.)

Figure: Alonzo
Church, father of
λ−calculus

Imperative vs Functional

I Imperative
I Focus on low-level how!
I A program is an ordered sequence of instructions
I Modifies/track the program’s state

I Functional
I Focus on High level what!
I Specify high-level transformation/constraint on the desidered

result description.

Imperative, suffer from the so called
indexitis
unsigned int sum=0;

for(int i=1;i <100;i++)

sum+=i;

Functional
sum [1..99]

Imperative vs Functional

Characteristic Imperative Functional
Programmer focus Algorithm design What the output look like?

State changes Fundamental Non-existent

Order of execution Important
Low importance
(compilers may do much work on this)

Primary flow control Loops, conditionals Recursion and Functions

Primary data unit Structures or classes Functions

I Other pure/quasi-pure languages: Erlang, Scala, F, LISP.

Why Haskell?

1. Haskell’s expressive power can improve
productivity/understandability/maintanibility

I Get best from compiled and interpreted languages
I Can understand what complex library does

2. Strong typed - Catches bugs at compile time

3. Powerful type inference engine i.e. no need to explicitely
specify types

4. New Testing metologies. Proving vs Testing (e.g.
QuickCheck)

5. Automatic parallelization due to code purity.

What really is Haskell?

Purely Functional language

I Functions are first-class object (same things as data)

I Deterministic - No Side Effect- same function call ⇒ same
Ouput, EVER!

I safely replace expressions by its (unique) result value
This referial transparency leaves room for compiler
optimization and allow to mathematically prove correctness

I Evaluate expression rather than execute instruction

I Function describes what data are, not what what to do to. . .

I Everything is immutable (i.e. NO variables)

I Multi-parameters function simply does not exists.

Haskell is Lazy

It won’t execute anything until is really
needed

I It is possible to define and work with
infinite data structures

I Define new control structure just by
defining a function.

I Reasoning about time/space complexity
much more complicated

Understanding laziness

lazyEval 0 b = 1

lazyEval _ b = b

I b never computed if the first parameter is zero

I this call is safe:
lazyEval 0 (2^123123123123123123123)

I this is not
lazyEval 1 (2^123123123123123123123)

Strict evaluation: parameter are evaluated before to be
passed to functions

1 int cont =0;

2 auto fcall = [] (int a, int b)

3 {if(a==0) return 1; else return b;};

4 auto f1 = [] () { cont ++; return 1};

5 auto f2 = [] () { cont +=10; return 2};

6 fcall (f1(),f2 ()));

How many times cont is updated?

ALWAYS twice

Understanding laziness

lazyEval 0 b = 1

lazyEval _ b = b

I b never computed if the first parameter is zero

I this call is safe:
lazyEval 0 (2^123123123123123123123)

I this is not
lazyEval 1 (2^123123123123123123123)

Strict evaluation: parameter are evaluated before to be
passed to functions

1 int cont =0;

2 auto fcall = [] (int a, int b)

3 {if(a==0) return 1; else return b;};

4 auto f1 = [] () { cont ++; return 1};

5 auto f2 = [] () { cont +=10; return 2};

6 fcall (f1(),f2 ()));

How many times cont is updated? ALWAYS twice

Hello Currying

Problem: compute the kth Fibonacci number.

f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)

f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer

f 0 1 10 :: Integer

Hello Currying

Problem: compute the kth Fibonacci number.
f a b k = if k==0 then a else f b (a+b) (k-1)

I Defines a recursive function f that takes a,b,k as parameters.

I Spaces are important. Are like function call operator () in
C-like languages.

I Wait, three space in f a b k: 3 function calls? YES!. Every
function in Haskell officially only takes one parameter.

I f infact has type
f :: Integer ->(Integer ->(Integer ->Integer))

i.e. a function that takes an integer and return (the ->) a
function that takes an integer and returns . . .

f 0 :: Integer ->(Integer ->Integer)
f 0 1 :: Integer ->Integer
f 0 1 10 :: Integer

Hello Currying - 2

Currying directly and naturally address the high-order functions
support Haskell machinery.

High-order function:

I Takes functions as parameter

I “returns” a function

zipwith

I Combines two list of type a and b using a function f that
takes a parameter of type a and one of type b and return a
value of type c , producing a list of elements of type c .

I zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

Hello Currying - 2

Currying directly and naturally address the high-order functions
support Haskell machinery.

High-order function:

I Takes functions as parameter

I “returns” a function

zipwith

I Combines two list of type a and b using a function f that
takes a parameter of type a and one of type b and return a
value of type c , producing a list of elements of type c .

I zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []

zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]

#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]

#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Hello Currying - 2

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith _ _ [] = []
zipWith _ [] _ = []
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

usage examples
#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
#> zipWith (*) [1,2,3] [4,5,6] = [4 ,10 ,18]
#> let f = in (\a b -> (ord a) + b)

zipWith f [’A’..] [1..]

What about this call? (missing one parameter)
let l = zipWith (*) [1,2,3]

l is a function that takes ONLY a list of Integer and returns
[1ȧ, 2ḃ, 3 dotc]

Type System

I Haskell is stricly typed

I Helps in thinking and express program structure

I Turns run-time errors into compile-time errors. ”If it
compiles, it must be correct”, is moslty true.

Abstraction
Every idea, algorithm, and piece of data should occur exactly once
in your code. Haskell features as parametric polymorphis1,
typeclasses2 high-order functions greatly aid in fighting
repetition.

1templates with type inference
2Interfaces

What really is Haskell?

C-like vs Haskell
Code as the one that follows
int acc = 0;

for (int i = 0; i < lst.length; i++)

acc = acc + 3 * lst[i];

is full of low-level details of iterating over an array by keeping track
of a current index. It much elegantely translates in:
sum (map (*3) lst)

Other examples:
partition (even) [49, 58, 76, 82, 83, 90]

--prime number generation

let pgen (p:xs) = p : pgen [x|x <- xs , x‘mod ‘p > 0]

take 40 (pgen [2..])

Haskell platform

A full comprehensive, development environment for Haskell34.

Installation

I $sudo apt -get install haskell -platform

GHC (Great Glasgow Compiler): State of the art

GHCi A read-eval-print loop interpreter

Cabal Build/distribuite/retrieve libraries

Haddock A high quality documentation generation tool for
Haskell

3https://www.haskell.org/platform/index.html
4http://tryhaskell.org/

Hello World

Our First Program

Create a file hello.hs and compile with the followings
main = putStrLn "Hello World with Haskell"
$ghc -o hello hello.hs

GHCi
Execute and play with GHCi by simply typing
reverse [1..10]

#> :t foldl

#> [1..]

#> (filter (even) .reverse) [1..100]

Section 2

Basics - Syntax

Syntax Basics

I Arithmetic and Boolean algebra works as expected
v1 = 12

v2 = mod (v1+3) 10

v3 = not $ True || (v2 >=v1) --not (True || (v2 >=v1))

I Function definition is made up of two part: type and body.
The body is made up of several clause that are evaluated
(pattern matched) top to bottom.

1 exp _ 0 = 1

2 exp 0 _ = 0

3 exp a b = a * (exp a (b-1))

What if we swap line 2 and 3?

I Comments:
--this is an inline comment

{-

All in here is comment

-}

Syntax Basics

I Arithmetic and Boolean algebra works as expected
v1 = 12

v2 = mod (v1+3) 10

v3 = not $ True || (v2 >=v1) --not (True || (v2 >=v1))

I Function definition is made up of two part: type and body.
The body is made up of several clause that are evaluated
(pattern matched) top to bottom.

4 exp _ 0 = 1

5 exp 0 _ = 0

6 exp a b = a * (exp a (b-1))

What if we swap line 2 and 3?

I Comments:
--this is an inline comment

{-

All in here is comment

-}

Syntax Basics

I Arithmetic and Boolean algebra works as expected
v1 = 12

v2 = mod (v1+3) 10

v3 = not $ True || (v2 >=v1) --not (True || (v2 >=v1))

I Function definition is made up of two part: type and body.
The body is made up of several clause that are evaluated
(pattern matched) top to bottom.

7 exp _ 0 = 1

8 exp 0 _ = 0

9 exp a b = a * (exp a (b-1))

What if we swap line 2 and 3?

I Comments:
--this is an inline comment

{-

All in here is comment

-}

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match

I fastExp 2 6 line 6 pattern match
I fastExp 2 3 line 7 pattern match
I fastExp 2 2 line 6 pattern match
I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match
I fastExp 2 6 line 6 pattern match

I fastExp 2 3 line 7 pattern match
I fastExp 2 2 line 6 pattern match
I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match
I fastExp 2 6 line 6 pattern match
I fastExp 2 3 line 7 pattern match

I fastExp 2 2 line 6 pattern match
I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match
I fastExp 2 6 line 6 pattern match
I fastExp 2 3 line 7 pattern match
I fastExp 2 2 line 6 pattern match

I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match
I fastExp 2 6 line 6 pattern match
I fastExp 2 3 line 7 pattern match
I fastExp 2 2 line 6 pattern match
I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

Guards, where, let

I Guards,let and where constructs
1 fastExp :: Integer -> Integer -> Integer

2 fastExp _ 0 = 1

3 fastExp a 1 = a

4 fastExp a b

5 |b < 0 = undefined

6 |even b = res*res

7 |otherwise = let next=(fastExp a (b-1)) in (a * next)

8 where res=(fastExp a (div b 2))

Suppose we execute fastExp 2 7. The call stack would be
I fastExp 2 7 line 7 pattern match
I fastExp 2 6 line 6 pattern match
I fastExp 2 3 line 7 pattern match
I fastExp 2 2 line 6 pattern match
I fastExp 2 1 line 3 pattern match, STOP RECURSION

In contrast to where, let are expressions and can be used
anywhere5.

5Here for more informations: https://wiki.haskell.org/Let vs Where

If, case

I if construct works as expected
1 div ’ n d = if d==0 then Nothing else Just (n/d)

I case construct
Useful when we don’t wish to define a function every time we
need to do pattern matching.
f p11 ... p1k = e1

...

f pn1 ... pnk = en

--where each pij is a pattern ,

--is semantically equivalent to:

f x1 x2 ... xk = case (x1 , ..., xk) of

(p11 , ..., p1k) -> e1

...

(pn1 , ..., pnk) -> en

All patterns of a function return the same type hence all the
RHS of the case have the same type

case construct: example

case construct example

Pattern match “outside” the function definition. Note that all the
cases return the same type (a list of b’s in this case)
cE :: (Ord a) :: a -> a -> [b]

cE a b xs = case (a ‘compare ‘ b,xs) of

(_,[]) -> []

(LT ,xs) -> init xs

(GT ,xs) -> tail xs

(EQ ,xs) -> [head xs]

Ranges

ranges

Shortcut for listing stuff that can be enumerated. What if we need
to test if a string contains a letter up to the lower casej?
(Explicitly list all the letters is not the correct answer).
[’a’..’j’] -- results in "abcdefghij" (String are [Char])

It work even in construction infinite list
[1 ,3..] -- results in [1 ,3 ,5 ,7 ,9 ,11 ,13 ,15......]

and because of laziness we can (safely) do
take 10 [1 ,3..]

List are useful!

I Colletcion of elements of the SAME TYPE.

I Delimited by square brackets and elements separated by
commas.

I List che be consed. The cons operator (:) is used to
incrementally build list putting an element at its head.

I empty list is []

I cons is a function that takes two parameter
(:) :: a -> [a] -> [a]
1:2:3:4:[]

List Comprehension

list comprehension

It is a familiar concept for those who already have some experience
in python It resambles the mathematical set specification. For
instance let’s compute the list of the factorial of the natural
numbers
[product [2..x] | x< -[1..]]

More examples:
[[2..x*2] | x< -[1..]]

[filter (even) [2..x] | x< -[1..]]

--:m Data.Char (ord)

[let p=y*x in if even p then (negate p) else

(p*2) |x< -[1..10] , y<-(map ord [’a’..’z’])]

--:m Data.List (nub)

nub $ map (\(x,y,z) -> z) [(a,b,c) | a< -[1..20] ,b< -[1..20] ,

c< -[1..20] , a^2+b^2==c^2, a+b+c>10]

Lambda functions - The Idea

I Anonymous functions i.e. no need to give it a name

I λyx → 2x + xy translates in
(\x y -> 2*x + x^y)

I Usually used withing high order function context.
map (\x -> x*x-3) [1 ,10..300]

map (\x -> let p = ord x in if even p then p else p^2)

"Lambda functions are cool!"

I f = (\x1..xn− > exp(x1..xn))(v1, .., vk) substitute each
occurence of the free variable xi with the value vi . If k < n f
is again a function.

I let f = (\x y z -> x+y+z)

let sum3 = f 2 3 = (\z -> 2+3+z) --again a function

sum23z 4 -> = 9

Section 3

Coding - Problems on Lists

Last element

Problem Statement
Given a polymorphic list l of type [a], find the last element of l
(not using function last, I’m sorry).

Examples:
_last [1,2,3,4] = 4

_last ["programming","haskell","is","cool"]= "cool"

Solution
_last :: [a] -> a

_last [] = error "Undefined operation"

_last (x:[]) = x

_last (x:xs) = _last xs

Last element

Problem Statement
Given a polymorphic list l of type [a], find the last element of l
(not using function last, I’m sorry).

Examples:
_last [1,2,3,4] = 4
_last ["programming","haskell","is","cool"]= "cool"

Solution
_last :: [a] -> a

_last [] = error "Undefined operation"

_last (x:[]) = x

_last (x:xs) = _last xs

Last element

Problem Statement
Given a polymorphic list l of type [a], find the last element of l
(not using function last, I’m sorry).

Examples:
_last [1,2,3,4] = 4
_last ["programming","haskell","is","cool"]= "cool"

Solution
_last :: [a] -> a

_last [] = error "Undefined operation"

_last (x:[]) = x

_last (x:xs) = _last xs

Last element

Problem Statement
Given a polymorphic list l of type [a], find the last element of l
(not using function last, I’m sorry).

Examples:
_last [1,2,3,4] = 4
_last ["programming","haskell","is","cool"]= "cool"

Solution
_last :: [a] -> a

_last [] = error "Undefined operation"

_last (x:[]) = x

_last (x:xs) = _last xs

k ’th element of a list

Problem Statement
Find the k ’th element of a list where the first element has index 1

Examples:
elementAt 2 [3,35,32,33] = 35

elementAt 3 [(’a’,97),(’b’,98),(’c’ ,99)] = (’c’,99)

elementAt 4 [(’a’,97),(’b’,98),(’c’ ,99)] = error "Index out of bound"

Solution
elementAt :: Integer -> [a] -> a

elementAt _ [] = error "index out of bound"

elementAt 1 (x:_) = x

elementAt n (_:xs) = elementAt (n-1) xs

k ’th element of a list

Problem Statement
Find the k ’th element of a list where the first element has index 1

Examples:
elementAt 2 [3,35,32,33] = 35
elementAt 3 [(’a’,97),(’b’,98),(’c’ ,99)] = (’c’,99)

elementAt 4 [(’a’,97),(’b’,98),(’c’ ,99)] = error "Index out of bound"

Solution
elementAt :: Integer -> [a] -> a

elementAt _ [] = error "index out of bound"

elementAt 1 (x:_) = x

elementAt n (_:xs) = elementAt (n-1) xs

k ’th element of a list

Problem Statement
Find the k ’th element of a list where the first element has index 1

Examples:
elementAt 2 [3,35,32,33] = 35
elementAt 3 [(’a’,97),(’b’,98),(’c’ ,99)] = (’c’,99)

elementAt 4 [(’a’,97),(’b’,98),(’c’ ,99)] = error "Index out of bound"

Solution
elementAt :: Integer -> [a] -> a

elementAt _ [] = error "index out of bound"

elementAt 1 (x:_) = x

elementAt n (_:xs) = elementAt (n-1) xs

k ’th element of a list

Problem Statement
Find the k ’th element of a list where the first element has index 1

Examples:
elementAt 2 [3,35,32,33] = 35
elementAt 3 [(’a’,97),(’b’,98),(’c’ ,99)] = (’c’,99)

elementAt 4 [(’a’,97),(’b’,98),(’c’ ,99)] = error "Index out of bound"

Solution
elementAt :: Integer -> [a] -> a

elementAt _ [] = error "index out of bound"

elementAt 1 (x:_) = x

elementAt n (_:xs) = elementAt (n-1) xs

Palindromic List

Problem Statement
Write a function that returns a boolean value tha indicates
whether the input list is palindromic or not. 1

Examples:
palindrome "itopinonavevanonipoti" = True

palindrome "[1,2,3,3,1] = False

Solution
palindrome1 l = l== reverse l

palindrome2 [] = True --empty list is palindrome

palindrome2 (_:[]) = True --one element is palindrome

palindrome2 l

| head l /= last l = False

| otherwise = palindrome2 ((tail . init) l)

Palindromic List

Problem Statement
Write a function that returns a boolean value tha indicates
whether the input list is palindromic or not. 1

Examples:
palindrome "itopinonavevanonipoti" = True

palindrome "[1,2,3,3,1] = False

Solution
palindrome1 l = l== reverse l

palindrome2 [] = True --empty list is palindrome

palindrome2 (_:[]) = True --one element is palindrome

palindrome2 l

| head l /= last l = False

| otherwise = palindrome2 ((tail . init) l)

Palindromic List

Problem Statement
Write a function that returns a boolean value tha indicates
whether the input list is palindromic or not. 1

Examples:
palindrome "itopinonavevanonipoti" = True

palindrome "[1,2,3,3,1] = False

Solution
palindrome1 l = l== reverse l

palindrome2 [] = True --empty list is palindrome

palindrome2 (_:[]) = True --one element is palindrome

palindrome2 l

| head l /= last l = False

| otherwise = palindrome2 ((tail . init) l)

Section 4

Problem on Numbers

Primality Test

Problem Statement
Determine whether a given integer number is prime.

Examples:
isPrime 57601 = True

isPrime 1235 = False

Solution
isPrime n = _isPrime n 2

where

_isPrime l k

| k > l = True -- k > sqrt(l)

| mod l k ==0 = False

| otherwise = _isPrime l (k+1)

Primality Test

Problem Statement
Determine whether a given integer number is prime.

Examples:
isPrime 57601 = True

isPrime 1235 = False

Solution
isPrime n = _isPrime n 2

where

_isPrime l k

| k > l = True -- k > sqrt(l)

| mod l k ==0 = False

| otherwise = _isPrime l (k+1)

Primality Test

Problem Statement
Determine whether a given integer number is prime.

Examples:
isPrime 57601 = True

isPrime 1235 = False

Solution
isPrime n = _isPrime n 2

where

_isPrime l k

| k > l = True -- k > sqrt(l)

| mod l k ==0 = False

| otherwise = _isPrime l (k+1)

GCD

Problem Statement
Implement the Euclid Method to find the greatest common divisor
of two integer.

Examples:
gcd ’ 30 12 = 6

gcd ’ 5 25 = 5

Solution
gcd ’ 0 y = y

gcd ’ x y = gcd ’ (mod y x) x

GCD

Problem Statement
Implement the Euclid Method to find the greatest common divisor
of two integer.

Examples:
gcd ’ 30 12 = 6

gcd ’ 5 25 = 5

Solution
gcd ’ 0 y = y

gcd ’ x y = gcd ’ (mod y x) x

GCD

Problem Statement
Implement the Euclid Method to find the greatest common divisor
of two integer.

Examples:
gcd ’ 30 12 = 6

gcd ’ 5 25 = 5

Solution
gcd ’ 0 y = y

gcd ’ x y = gcd ’ (mod y x) x

Totient function

Problem Statement
Calculate Euler’s totient function phi(m).
Euler’s so-called totient function φ(m) is defined as the number of
positive integers r (1 ≤ r < m) that are coprime to m.

Examples:
totient 10 = 4

totient 57601 = 57600 --57601 is prime^^

Solution
totient n = length [e | e <- [1..n], coprime e n]

where coprime e n = gcd n e ==1

Totient function

Problem Statement
Calculate Euler’s totient function phi(m).
Euler’s so-called totient function φ(m) is defined as the number of
positive integers r (1 ≤ r < m) that are coprime to m.

Examples:
totient 10 = 4

totient 57601 = 57600 --57601 is prime^^

Solution
totient n = length [e | e <- [1..n], coprime e n]

where coprime e n = gcd n e ==1

Totient function

Problem Statement
Calculate Euler’s totient function phi(m).
Euler’s so-called totient function φ(m) is defined as the number of
positive integers r (1 ≤ r < m) that are coprime to m.

Examples:
totient 10 = 4

totient 57601 = 57600 --57601 is prime^^

Solution
totient n = length [e | e <- [1..n], coprime e n]

where coprime e n = gcd n e ==1

Section 5

Find Best Variance - Stock Data

Best Variance Day

Problem Statement
Write a program that read a file containing daily stock data. Each
line of the file records data regarding prices of a good registered at
regular time interval during each day. Fine the day which have the
maximum variance between opening and closing price (second and
last price record).

File content:
2012-03-30,32.40,32.41,32.04,32.26,31749400,32.26
2012-03-29,32.06,32.19,31.81,32.12,37038500,32.12
2012-03-28,32.52,32.70,32.04,32.19,41344800,32.19

Solution

The Solution. cabal install split
module Main where

import System.Environment (getArgs)

import Data.List.Split (splitOn)

import Data.List (maximumBy)

--main entry point

main = do

(fileName:_) <- getArgs

strF <- readFile fileName putStrLn $ maxDay strF

maxDay :: String -> String

maxDay s = snd $ maximum ss

where

ss = map (var . (splitOn ",")) $ lines s

var xs = abs diff

where diff =((read (xs !!1)) - (read (last xs)),head xs)

Section 6

Coding - Project Euler Problem 1

Problems 1

Problem Statement
If we list all the natural numbers below 10 that are multiples of 3
or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find
the sum of all the multiples of 3 or 5 below 1000.

How would you solve it using Haskell?
problem1 ’ = sum .

filter (\x -> x ‘mod ‘ 3==0 || x ‘mod ‘ 5 ==0)

Problems 1

Problem Statement
If we list all the natural numbers below 10 that are multiples of 3
or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find
the sum of all the multiples of 3 or 5 below 1000.

How would you solve it using Haskell?

problem1 ’ = sum .

filter (\x -> x ‘mod ‘ 3==0 || x ‘mod ‘ 5 ==0)

Problems 1

Problem Statement
If we list all the natural numbers below 10 that are multiples of 3
or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find
the sum of all the multiples of 3 or 5 below 1000.

How would you solve it using Haskell?
problem1 ’ = sum .

filter (\x -> x ‘mod ‘ 3==0 || x ‘mod ‘ 5 ==0)

Section 7

Coding - Project Euler Problem 26

Problems 26

Problem Statement
A unit fraction contains 1 in the
numerator. Where 0.1(6) means
0.166666..., and has a 1-digit
recurring cycle. It can be seen that
1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for
which 1/d contains the longest
recurring cycle in its decimal
fraction part.

I 1/2 = 0.5 - 0-recur

I 1/3 = 0.(3) - 1-recur

I 1/4 = 0.25 - 0-recur

I 1/5 = 0.2 - 0-recur

I 1/6 = 0.1(6) - 1-recur

I 1/7 = 0.(142857) - 6-recur

I 1/8 = 0.125 - 0-recur

I 1/9 = 0.(1) - 1-recur

I 1/10 = 0.1 - 0-recur

Problems 26 - Solution

Key idea: Find the order of 10 in N/pN
The length of the repetend (period of the repeating decimal)
of 1/p is equal to the order of 10 modulo p. If 10 is a primitive
root modulo p, the repetend length is equal to p − 1; if not, the
repetend length is a factor of p − 1. This result can be deduced
from Fermat’s little theorem, which states that
10p − 1 ≡ 1 (mod p).(Wikipedia)

The smallest power n of g s.t. gn ≡ 1 (mod p).

Problems 26 - Order finding example

101 ≡ 10 (mod 13)

102 ≡ 9 (mod 13)

103 ≡ 12 (mod 13)

104 ≡ 3 (mod 13)

105 ≡ 4 (mod 13)

106 ≡ 1 (mod 13)

I 6 is the order of 10 (modulo 13)
I map (\a -> mod (10^a) 13) [1..12]

Problems 26 - Order finding example

So now the problem is. Compute the order of numbers
n < 1000 and return the one that have maximum order
--modulo , current order

order :: Integer -> Integer -> Integer

order a ord

| mod (10^ ord) a == 1 = ord

| ord > a = 0

| otherwise = order a (ord+1)

maxo = fst $ maximumBy comparing $ pp

where

comparing = (\(m,n) (p,q) -> n ‘compare ‘ q)

pp = map (\x->(x,order x 1))

(filter (\x-> mod x 10 > 0) [1 ,3..1000])

Thank you

	Introduction - Functional Programming
	Scope Of The Talk
	Functional Programming
	Tools and Installation
	Toolbox - Hello world(s)

	Basics - Syntax
	Arithmetic And Boolean algebra
	Guards, where, let
	if and case construct
	Ranges
	List
	Lambda Functions

	Coding - Problems on Lists
	Last element
	kÃ¬th element
	Palindrome List

	Problem on Numbers
	Primality Test
	Greatest common divisor
	Euler's torient

	Find Best Variance - Stock Data
	I/O - Find Best Variance

	Coding - Project Euler Problem 1
	Problems 1

	Coding - Project Euler Problem 26
	Problems 26

