A Journey in Functional Programming
 An introduction to Haskell

Davide Spataro ${ }^{1}$
${ }^{1}$ Department of mathematics And Computer Science
Univeristy of Calabria

October 14, 2015

Table of contents I

```
Introduction - Functional Programming
    Scope Of The Talk
    Functional Programming
    Tools and Installation
    Toolbox - Hello world(s)
Basics - Syntax
    Arithmetic And Boolean algebra
    Guards, where, let
    if and case construct
    Ranges
    List
    Lambda Functions
```

Coding - Problems on Lists
Last element
k th element
Palindrome List

Table of contents II

Problem on Numbers
Primality Test
Greatest common divisor
Euler's torient

Find Best Variance - Stock Data
I/O - Find Best Variance

Coding - Project Euler Problem 1
Problems 1

Coding - Project Euler Problem 26
Problems 26

Section 1

Introduction - Functional Programming

How many of you are capable of writing (correct) quicksort in an imperative language at the first try?

All Haskell programmers are!

What does this code do?

```
void function (int *a, int n) {
    int i, j, p, t;
    if (n < 2)
        return;
    p = a[n / 2];
    for (i = 0, j = n - 1;; i++, j--) {
        while (a[i] < p)
        i++;
        while (p < a[j])
        j--;
        if (i >= j)
                break;
        t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
    function(a, i);
    function(a + i, n - i);
}
```

```
function ::(Ord a) => [a] -> [a]
function [] = []
function (x:xs) = (function l) ++ [x] ++ (function g)
    where
    l = filter (<x) xs
    g = filter (>=x) xs
```

- No indices
- No memory/pointer management
- No variable assignment

Functional Programming

Definition and Intuitive idea

- Computation is just function evaluation \neq program state manipulation.
- Based on λ-calculus that is an alternative (to set theory) and convenient formalization of logic and mathematics for expressing computation
- Logic deduction $\Leftrightarrow \lambda$-calculus thanks to the Curry-Howard correnspondence.
- A program is a proof!
- Heavily based on Category Theory (Monad,

Figure: Alonzo
Church, father of λ-calculus Functor, etc.)

Imperative vs Functional

- Imperative
- Focus on low-level how!
- A program is an ordered sequence of instructions
- Modifies/track the program's state
- Functional
- Focus on High level what!
- Specify high-level transformation/constraint on the desidered result description.

Imperative, suffer from the so called indexitis

Functional
sum [1..99]
unsigned int sum=0;
for (int i=1;i<100;i++)
sum+=i;

Imperative vs Functional

Characteristic	Imperative	Functional
Programmer focus	Algorithm design	What the output look like?
State changes	Fundamental	Non-existent
Order of execution	Important	Low importance (compilers may do much work on this)
Primary flow control	Loops, conditionals	Recursion and Functions
Primary data unit	Structures or classes	Functions

- Other pure/quasi-pure languages: Erlang, Scala, F, LISP.

Why Haskell?

1. Haskell's expressive power can improve productivity/understandability/maintanibility

- Get best from compiled and interpreted languages
- Can understand what complex library does

2. Strong typed - Catches bugs at compile time
3. Powerful type inference engine i.e. no need to explicitely specify types
4. New Testing metologies. Proving vs Testing (e.g. QuickCheck)
5. Automatic parallelization due to code purity.

What really is Haskell?

Purely Functional language

- Functions are first-class object (same things as data)
- Deterministic - No Side Effect- same function call \Rightarrow same Ouput, EVER!
- safely replace expressions by its (unique) result value This referial transparency leaves room for compiler optimization and allow to mathematically prove correctness
- Evaluate expression rather than execute instruction
- Function describes what data are, not what what to do to...
- Everything is immutable (i.e. NO variables)
- Multi-parameters function simply does not exists.

Haskell is Lazy

It won't execute anything until is really needed

- It is possible to define and work with infinite data structures
- Define new control structure just by defining a function.
- Reasoning about time/space complexity much more complicated

Understanding laziness

$$
\begin{aligned}
& \text { lazyEval } 0 \text { b }=1 \\
& \text { lazyEval _ } \quad=\mathrm{b}
\end{aligned}
$$

- b never computed if the first parameter is zero
- this call is safe:
lazyEval 0 (2^123123123123123123123)
- this is not

$$
\text { lazyEval } 1 \quad\left(2^{\wedge} 123123123123123123123\right)
$$

Strict evaluation: parameter are evaluated before to be passed to functions

```
    int cont=0;
    auto fcall = [] (int a, int b)
    {if(a==0) return 1; else return b;};
auto f1 = [] () { cont++; return 1};
auto f2 = [] () { cont+=10; return 2};
    fcall (f1(),f2()));
```

How many times cont is updated?

Understanding laziness

$$
\begin{aligned}
& \text { lazyEval } 0 \text { b }=1 \\
& \text { lazyEval _ } \quad=\mathrm{b}
\end{aligned}
$$

- b never computed if the first parameter is zero
- this call is safe:
lazyEval 0 (2^123123123123123123123)
- this is not

$$
\text { lazyEval } 1 \quad\left(2^{\wedge} 123123123123123123123\right)
$$

Strict evaluation: parameter are evaluated before to be passed to functions

```
    int cont=0;
auto fcall= [] (int a, int b)
{if(a==0) return 1; else return b;};
auto f1 = [] () { cont++; return 1};
auto f2 = [] () { cont+=10; return 2};
    fcall (f1(),f2()));
```

How many times cont is updated? ALMAYS tWice

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f a b k=i f k==0$ then a else $f(a+b)(k-1)$

- Defines a recursive function f that takes a, b, k as parameters.

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \quad a b k=i f k==0$ then a else $f(a+b)(k-1)$

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \quad a b k=i f k==0$ then a else $f(a+b)(k-1)$

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.
- Wait, three space in $f a b k$: 3 function calls? YES!. Every function in Haskell officially only takes one parameter.

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \mathrm{a} b \mathrm{k}=$ if $\mathrm{k}==0$ then a else f b (a+b) (k-1)

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.
- Wait, three space in $f a b k$: 3 function calls? YES!. Every function in Haskell officially only takes one parameter.
- finfact has type
f : : Integer->(Integer->(Integer->Integer))
i.e. a function that takes an integer and return (the ->) a function that takes an integer and returns...

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \mathrm{a} b \mathrm{k}=$ if $\mathrm{k}==0$ then a else f b (a+b) (k-1)

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.
- Wait, three space in $f a b k$: 3 function calls? YES!. Every function in Haskell officially only takes one parameter.
- finfact has type
f : : Integer->(Integer->(Integer->Integer))
i.e. a function that takes an integer and return (the $->$) a function that takes an integer and returns...
f 0 :: Integer->(Integer->Integer)

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \mathrm{a} b \mathrm{k}=$ if $\mathrm{k}==0$ then a else f b (a+b) (k-1)

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.
- Wait, three space in $f a b k$: 3 function calls? YES!. Every function in Haskell officially only takes one parameter.
- finfact has type
f : : Integer->(Integer->(Integer->Integer))
i.e. a function that takes an integer and return (the $->$) a function that takes an integer and returns...
f 0 :: Integer->(Integer->Integer)
f 0 1 :: Integer->Integer

Hello Currying

Problem: compute the $k^{\text {th }}$ Fibonacci number.
$f \mathrm{a} b \mathrm{k}=$ if $\mathrm{k}==0$ then a else f b (a+b) (k-1)

- Defines a recursive function f that takes a, b, k as parameters.
- Spaces are important. Are like function call operator () in C-like languages.
- Wait, three space in $f a b k$: 3 function calls? YES!. Every function in Haskell officially only takes one parameter.
- finfact has type
f : : Integer->(Integer->(Integer->Integer))
i.e. a function that takes an integer and return (the $->$) a function that takes an integer and returns...

```
f 0 :: Integer->(Integer-> Integer)
f 0 1 :: Integer-> Integer
f 0 1 10 :: Integer
```


Hello Currying - 2

Currying directly and naturally address the high-order functions support Haskell machinery.

High-order function:

- Takes functions as parameter
- "returns" a function

Hello Currying - 2

Currying directly and naturally address the high-order functions support Haskell machinery.

High-order function:

- Takes functions as parameter
- "returns" a function

zipwith

- Combines two list of type a and b using a function f that takes a parameter of type a and one of type b and return a value of type c, producing a list of elements of type c.
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

Hello Currying - 2
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

Hello Currying - 2

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith - }[]=[]
\end{aligned}
$$

Hello Currying - 2

zipWith :: (a -> b $->\mathrm{c})$-> [a] -> [b] -> [c]
zipWith _ []$=[]$
zipWith _ [] _ $=$ []

Hello Currying - 2

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith }-\overline{[}]=[] \\
& \text { zipWith } \overline{[]}=[] \\
& \text { zipWith }(x: \overline{x s})(y: y s)=f \text { x y : zipWith f xs ys }
\end{aligned}
$$

Hello Currying - 2

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith }-[]=[] \\
& \text { zipWith } \overline{[}]=\overline{=}[] \\
& \text { zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys } \\
& \text { usage examples } \\
& \text { \#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9] }
\end{aligned}
$$

Hello Currying - 2

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith }-\overline{=}[]=[] \\
& \text { zipWith }-[]=-=[] \\
& \text { zipWith f (x:xs) (y:ys) =f x y : zipWith f xs ys } \\
& \text { usage examples } \\
& \text { \#> zipWith (+) [1, } 2,3][4,5,6]=[5,7,9] \\
& \text { \#> zipWith (*) }[1,2,3][4,5,6]=[4,10,18]
\end{aligned}
$$

Hello Currying - 2

 usage examples
\#> zipWith (+) $[1,2,3][4,5,6]=[5,7,9]$
\#> zipWith (*) $[1,2,3][4,5,6]=[4,10,18]$
\#> let $f=$ in ($\backslash \mathrm{a}$ b $->($ ord $a)+b)$ zipWith f ['A'..] [1..]

Hello Currying - 2

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith }-\overline{[]}=[] \\
& \text { zipWith } \overline{[]}=[] \\
& \text { zipWith }(x: \overline{x s})(y: y s)=f \text { x y : zipWith f xs ys }
\end{aligned}
$$

usage examples

$$
\begin{aligned}
& \text { \#> zipWith (+) [1,2,3] [4,5,6] = [5,7,9] } \\
& \text { \#> zipWith (*) }[1,2,3][4,5,6]=[4,10,18] \\
& \text { \#> let } f=\text { in (} \backslash \mathrm{a} \text { b }->(\text { ord } a)+b \text {) } \\
& \text { zipWith f ['A'..] [1..] }
\end{aligned}
$$

What about this call? (missing one parameter)
let $l=$ zipWith (*) [1,2,3]
1 is a function that takes ONLY a list of Integer and returns [$1 \dot{a}, 2 \dot{b}, 3$ dotc]

Type System

- Haskell is stricly typed
- Helps in thinking and express program structure
- Turns run-time errors into compile-time errors. "If it compiles, it must be correct", is moslty true.

Abstraction

Every idea, algorithm, and piece of data should occur exactly once in your code. Haskell features as parametric polymorphis ${ }^{1}$, typeclasses ${ }^{2}$ high-order functions greatly aid in fighting repetition.

[^0]
What really is Haskell?

C-like vs Haskell
Code as the one that follows

$$
\text { int acc }=0 \text {; }
$$

for (int i = 0; i < lst.length; i++)

$$
\text { acc }=\text { acc + 3* lst[i]; }
$$

is full of low-level details of iterating over an array by keeping track of a current index. It much elegantely translates in:
sum (map (*3) lst)
Other examples:

```
partition (even) [49, 58, 76, 82, 83, 90]
--prime number generation
let pgen (p:xs) = p : pgen [x|x <- xs, x'mod'p > 0]
take 40 (pgen [2..])
```


Haskell platform

A full comprehensive, development environment for Haskell ${ }^{34}$. Installation

- \$sudo apt-get install haskell-platform

GHC (Great Glasgow Compiler): State of the art
GHCi A read-eval-print loop interpreter
Cabal Build/distribuite/retrieve libraries
Haddock A high quality documentation generation tool for Haskell

[^1]
Hello World

Our First Program

Create a file hello.hs and compile with the followings
main $=$ putStrLn "Hello World with Haskell"
\$ghc -o hello hello.hs

GHCi

Execute and play with GHCi by simply typing reverse [1..10]
\#> :t foldl
\#> [1..]
\#> (filter (even) .reverse) [1..100]

Section 2

Basics - Syntax

Syntax Basics

- Arithmetic and Boolean algebra works as expected
$\mathrm{v} 1=12$
$\mathrm{v} 2=\bmod (\mathrm{v} 1+3) 10$
v3 $=\operatorname{not} \$ \operatorname{True}| |(v 2>=v 1)--n o t(T r u e| |(v 2>=v 1))$

Syntax Basics

- Arithmetic and Boolean algebra works as expected

$$
\mathrm{v} 1=12
$$

$$
\mathrm{v} 2=\bmod (\mathrm{v} 1+3) 10
$$

$$
\mathrm{v} 3=\text { not } \$ \text { True || (v2>=v1) --not (True || (v2>=v1)) }
$$

- Function definition is made up of two part: type and body. The body is made up of several clause that are evaluated (pattern matched) top to bottom.
4 exp - $0=1$
5 exp 0 _ $=0$
$6 \exp \mathrm{a}$ b $=\mathrm{a} *(\exp \mathrm{a}(\mathrm{b}-1))$
What if we swap line 2 and 3 ?

Syntax Basics

- Arithmetic and Boolean algebra works as expected

$$
\mathrm{v} 1=12
$$

$$
\mathrm{v} 2=\bmod (\mathrm{v} 1+3) 10
$$

$$
\mathrm{v} 3=\text { not \$ True || (v2>=v1) --not (True || (v2>=v1)) }
$$

- Function definition is made up of two part: type and body. The body is made up of several clause that are evaluated (pattern matched) top to bottom.
$7 \exp -0=1$
$8 \exp 0^{2}=0$
$9 \exp \mathrm{a} b=\mathrm{a} *(\exp \mathrm{a}(\mathrm{b}-1))$
What if we swap line 2 and 3 ?
- Comments:
--this is an inline comment
\{-
All in here is comment
$-\}$

Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise \(=\) let next \(=(f a s t E x p ~ a(b-1))\) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
```


Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise \(=\) let next \(=(f a s t E x p ~ a(b-1))\) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
    - fastExp 26 line 6 pattern match
```


Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise \(=\) let next \(=(f a s t E x p ~ a(b-1))\) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
    - fastExp 26 line 6 pattern match
    - fastExp 23 line 7 pattern match
```


Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise = let next=(fastExp a (b-1)) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
    - fastExp 26 line 6 pattern match
    - fastExp 23 line 7 pattern match
    - fastExp 22 line 6 pattern match
```

[^2]
Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise = let next=(fastExp a (b-1)) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
    - fastExp 26 line 6 pattern match
    - fastExp 23 line 7 pattern match
    - fastExp 22 line 6 pattern match
    - fastExp 21 line 3 pattern match, STOP RECURSION
```

 \({ }^{5}\) Here for more informations: https://wiki.haskell.org/Let_vs_Where

Guards, where, let

- Guards,let and where constructs

```
fastExp :: Integer -> Integer-> Integer
fastExp - \(0=1\)
fastExp a \(1=a\)
fastExp a b
    |b < 0 = undefined
    |even b = res*res
    |otherwise = let next=(fastExp a (b-1)) in (a * next)
        where res=(fastExp a (div b 2))
    Suppose we execute fastExp 27 . The call stack would be
    - fastExp 27 line 7 pattern match
    - fastExp 26 line 6 pattern match
    - fastExp 23 line 7 pattern match
    - fastExp 22 line 6 pattern match
    - fastExp 21 line 3 pattern match, STOP RECURSION
```

 In contrast to where, let are expressions and can be used
 anywhere \({ }^{5}\).
 ${ }^{5}$ Here for more informations: https://wiki.haskell.org/Let_vs_Where

If, case

- if construct works as expected

1 div' n d $=$ if $\mathrm{d}==0$ then Nothing else Just (n / d)

- case construct

Useful when we don't wish to define a function every time we need to do pattern matching.
f p11 ... p1k = e1
f pn1 ... pnk = en
--where each pij is a pattern,
--is semantically equivalent to:
f x1 x2 ... $x k=c a s e(x 1, \ldots, x k) ~ o f$
(p11, ..., p1k) -> e1
(pn1, ..., pnk) -> en
All patterns of a function return the same type hence all the RHS of the case have the same type

case construct: example

case construct example

Pattern match "outside" the function definition. Note that all the cases return the same type (a list of b 's in this case)

$c E a \operatorname{b} x s=c a s e(a \quad$ compare' $b, x s)$ of
(_, []) $->$ []
(LT, xs) $->$ init $x s$
(GT,xs) -> tail xs
(EQ, xs) \rightarrow [head $x s$]

Ranges

ranges

Shortcut for listing stuff that can be enumerated. What if we need to test if a string contains a letter up to the lower casej?
(Explicitly list all the letters is not the correct answer). ['a'..'j'] -- results in "abcdefghij" (String are [Char])
It work even in construction infinite list
[1,3..] -- results in $[1,3,5,7,9,11,13,15 \ldots \ldots]$ and because of laziness we can (safely) do
take 10 [1,3..]

List are useful!

- Colletcion of elements of the SAME TYPE.
- Delimited by square brackets and elements separated by commas.
- List che be consed. The cons operator (:) is used to incrementally build list putting an element at its head.
- empty list is []
- cons is a function that takes two parameter (:) :: a -> [a] -> [a]
1:2:3:4:[]

List Comprehension

list comprehension

It is a familiar concept for those who already have some experience in python It resambles the mathematical set specification. For instance let's compute the list of the factorial of the natural numbers

```
    [product [2..x] | x<-[1..]]
```

More examples:

```
    [[2..x*2] | x<-[1..]]
    [filter (even) [2..x] | x<-[1..]]
        --:m Data.Char (ord)
    [let p=y*x in if even p then (negate p) else
        (p*2) |x<-[1..10], y<-(map ord ['a'..'z'])]
        --:m Data.List (nub)
```

nub $\$ \operatorname{map}(\backslash(x, y, z)->z)[(a, b, c) \mid a<-[1 . .20], b<-[1 . .20]$,
$\left.c<-[1.20], a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2, a+b+c>10\right]$

Lambda functions - The Idea

- Anonymous functions i.e. no need to give it a name
- $\lambda y x \rightarrow 2 x+x^{y}$ translates in ($\backslash \mathrm{x}$ y $->2 * \mathrm{x}+\mathrm{x}^{\wedge} \mathrm{y}$)
- Usually used withing high order function context.

```
map (\x -> x*x-3) [1,10..300]
map (\x -> let p = ord x in if even p then p else p^2)
    "Lambda functions are cool!"
```

- $f=\left(\backslash x_{1} . . x_{n}->\exp \left(x_{1} . . x_{n}\right)\right)\left(v_{1}, . ., v_{k}\right)$ substitute each occurence of the free variable x_{i} with the value v_{i}. If $k<n f$ is again a function.
- let $f=(\backslash x$ y $z->x+y+z)$
let sum3 $=\mathrm{f} 23=(\backslash z \rightarrow 2+3+z)--a g a i n$ a function sum23z $4 \rightarrow=9$

Section 3

Coding - Problems on Lists

Last element

Problem Statement

Given a polymorphic list I of type [a], find the last element of I (not using function last, I'm sorry).

Examples:

_last $[1,2,3,4]=4$

Last element

Problem Statement

Given a polymorphic list I of type [a], find the last element of I (not using function last, I'm sorry).

Examples:

_last $[1,2,3,4]=4$
_last ["programming","haskell","is","cool"]= "cool"

Last element

Problem Statement

Given a polymorphic list I of type [a], find the last element of I (not using function last, I'm sorry).

Examples:

_last $[1,2,3,4]=4$
_last ["programming","haskell","is","cool"]= "cool"

Last element

Problem Statement

Given a polymorphic list I of type [a], find the last element of I (not using function last, I'm sorry).

Examples:

$$
\begin{aligned}
& \text { _last }[1,2,3,4]=4 \\
& \text { _last }[" p r o g r a m m i n g ", " h a s k e l l ", " i s ", " \operatorname{cool} "]=\text { "cool" }
\end{aligned}
$$

Solution
_last :: [a] -> a
_last [] = error "Undefined operation"
_last $(x:[])=x$
_last (x:xs) = _last xs

k 'th element of a list

Problem Statement
Find the k 'th element of a list where the first element has index 1
Examples:
elementAt $2[3,35,32,33]=35$

k 'th element of a list

Problem Statement

Find the k 'th element of a list where the first element has index 1

Examples:

```
elementAt 2 [3,35,32,33] \(=35\)
elementAt 3 [('a', 97), ('b', 98), ('c', 99)] \(=\left({ }^{\prime} c ', 99\right)\)
elementAt 4 [('a', 97), ('b', 98), ('c', 99)] = error "Index out
```


k 'th element of a list

Problem Statement

Find the k 'th element of a list where the first element has index 1

Examples:

```
elementAt 2 [3,35,32,33] \(=35\)
elementAt 3 [('a', 97), ('b', 98), ('c', 99)] \(=\left({ }^{\prime} c ', 99\right)\)
elementAt 4 [('a', 97), ('b', 98), ('c', 99)] = error "Index out
```


k 'th element of a list

Problem Statement

Find the k 'th element of a list where the first element has index 1
Examples:
elementAt $2[3,35,32,33]=35$
elementAt $3\left[\left({ }^{\prime} \mathrm{a},, 97\right),\left({ }^{\prime} \mathrm{b},, 98\right),\left({ }^{\prime} \mathrm{c},, 99\right)\right]=\left({ }^{\prime} \mathrm{c},, 99\right)$
elementat $4\left[\left({ }^{\prime} \mathrm{a},, 97\right),(' \mathrm{~b},, 98),\left(\mathrm{c}^{\prime}, 99\right)\right]=$ error "Index out
Solution

```
elementAt : : Integer \(->\) [a] \(->a\)
elementAt _ [] = error "index out of bound"
elementAt 1 ( \(x:)_{\text {_ }}\) ) \(x\)
elementAt \(n\left(\_: x s\right)=\) elementAt ( \(n-1\) ) \(x s\)
```


Palindromic List

Problem Statement

Write a function that returns a boolean value tha indicates whether the input list is palindromic or not. 1

Palindromic List

Problem Statement

Write a function that returns a boolean value tha indicates whether the input list is palindromic or not. 1

Examples:

palindrome "itopinonavevanonipoti" = True
palindrome "[1, $2,3,3,1]=$ False

Palindromic List

Problem Statement

Write a function that returns a boolean value tha indicates whether the input list is palindromic or not. 1

Examples:

palindrome "itopinonavevanonipoti" $"$ True
palindrome "[1, $2,3,3,1]=$ False

Solution

```
palindrome1 l = l== reverse l
```

palindrome2 [] = True --empty list is palindrome
palindrome2 (_: []) = True --one element is palindrome
palindrome2 1
| head $1 /=$ last 1 = False
| otherwise $=$ palindrome2 ((tail . init) 1)

Section 4

Problem on Numbers

Primality Test

Problem Statement

Determine whether a given integer number is prime.

Primality Test

Problem Statement

Determine whether a given integer number is prime.

Examples:

isPrime $57601=$ True
isPrime $1235=$ False

Primality Test

Problem Statement

Determine whether a given integer number is prime.

Examples:

isPrime $57601=$ True
isPrime $1235=$ False
Solution

```
isPrime n = _isPrime n 2
    where
        _isPrime l k
        | k l = True -- k > sqrt(l)
    | mod l k ==0 = False
    | otherwise = _isPrime l (k+1)
```


GCD

Problem Statement
Implement the Euclid Method to find the greatest common divisor of two integer.

GCD

Problem Statement
Implement the Euclid Method to find the greatest common divisor of two integer.

```
Examples:
gcd, 30 12 = 6
gcd' 5 25 = 5
```


GCD

Problem Statement

Implement the Euclid Method to find the greatest common divisor of two integer.

Examples:

gcd, $3012=$	6
gcd, 525	$=5$

Solution

```
gcd, 0 y = y
gcd' x y = gcd' (mod y x) x
```


Totient function

Problem Statement
Calculate Euler's totient function phi(m).
Euler's so-called totient function $\phi(m)$ is defined as the number of positive integers $r(1 \leq r<m)$ that are coprime to m.

Totient function

Problem Statement
Calculate Euler's totient function phi(m).
Euler's so-called totient function $\phi(m)$ is defined as the number of positive integers $r(1 \leq r<m)$ that are coprime to m.

Examples:

$\begin{array}{ll}\text { totient } 10 & =4 \\ \text { totient } 57601=57600--57601 \text { is prime }\end{array}$

Totient function

Problem Statement
Calculate Euler's totient function phi(m).
Euler's so-called totient function $\phi(m)$ is defined as the number of positive integers $r(1 \leq r<m)$ that are coprime to m.

Examples:

$\begin{aligned} \text { totient } 10 & =4 \\ \text { totient } 57601 & =57600--57601 \text { is prime }\end{aligned}$
Solution
totient $n=$ length $[e \mid e<-[1 . . n]$, coprime en]
where coprime e $n=\operatorname{gcd} n$ e $==1$

Section 5

Find Best Variance - Stock Data

Best Variance Day

Problem Statement

Write a program that read a file containing daily stock data. Each line of the file records data regarding prices of a good registered at regular time interval during each day. Fine the day which have the maximum variance between opening and closing price (second and last price record).
File content:

$$
\begin{aligned}
& 2012-03-30, \mathbf{3 2 . 4 0}, 32.41,32.04,32.26,31749400, \mathbf{3 2 . 2 6} \\
& 2012-03-29,32.06,32.19,31.81,32.12,37038500,32.12 \\
& 2012-03-28,32.52,32.70,32.04,32.19,41344800, \mathbf{3 2 . 1 9}
\end{aligned}
$$

Solution

The Solution. cabal install split

```
module Main where
```

import System.Environment (getArgs)
import Data.List.Split (splitOn)
import Data.List (maximumBy)
--main entry point
main $=$ do
(fileName:_) <- getArgs
strF <- readFile fileName putStrLn $\$$ maxDay strF
$\operatorname{maxDay}::$ String \rightarrow String
$\operatorname{maxDay} s=$ snd $\$$ maximum $s s$
where
$s s=m a p(v a r$. (splitOn ",")) \$ lines s
var $x s=a b s$ diff
where diff=((read (xs!!1)) - (read (last xs)),head xs)

Section 6

Coding - Project Euler Problem 1

Problems 1

Problem Statement

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9 . The sum of these multiples is 23 . Find the sum of all the multiples of 3 or 5 below 1000 .

Problems 1

Problem Statement

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9 . The sum of these multiples is 23 . Find the sum of all the multiples of 3 or 5 below 1000 .
How would you solve it using Haskell?

Problems 1

Problem Statement

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9 . The sum of these multiples is 23 . Find the sum of all the multiples of 3 or 5 below 1000 .
How would you solve it using Haskell?
problem1' = sum .

$$
\text { filter }(\backslash x->x \text { 'mod' } 3==0| | x \text { 'mod' } 5==0)
$$

Section 7

Coding - Project Euler Problem 26

Problems 26

Problem Statement

A unit fraction contains 1 in the numerator. Where 0.1(6) means $0.166666 \ldots$, and has a 1-digit recurring cycle. It can be seen that $1 / 7$ has a 6 -digit recurring cycle. Find the value of $d<1000$ for which $1 / d$ contains the longest recurring cycle in its decimal fraction part.

- $1 / 2=0.5-0$-recur
- $1 / 3=0 .(3)$ - 1 -recur
- $1 / 4=0.25$ - 0 -recur
- $1 / 5=0.2$ - 0 -recur
- $1 / 6=0.1(6)-1$-recur
- $1 / 7=0 .(142857)-6$-recur
- $1 / 8=0.125-0$-recur
- $1 / 9=0$.(1) - 1 -recur
- $1 / 10=0.1$ - 0 -recur

Problems 26 - Solution

Key idea: Find the order of 10 in $\mathbb{N} / p \mathbb{N}$
The length of the repetend (period of the repeating decimal) of $1 / p$ is equal to the order of 10 modulo p. If 10 is a primitive root modulo p, the repetend length is equal to $p-1$; if not, the repetend length is a factor of $p-1$. This result can be deduced from Fermat's little theorem, which states that $10 p-1 \equiv 1(\bmod p) .($ Wikipedia $)$

The smallest power n of g s.t. $g^{n} \equiv 1(\bmod p)$.

Problems 26 - Order finding example

$$
\begin{aligned}
10^{1} & \equiv 10(\bmod 13) \\
10^{2} & \equiv 9(\bmod 13) \\
10^{3} & \equiv 12(\bmod 13) \\
10^{4} & \equiv 3(\bmod 13) \\
10^{5} & \equiv 4(\bmod 13) \\
10^{6} & \equiv 1(\bmod 13)
\end{aligned}
$$

- 6 is the order of 10 (modulo 13)
- map ($\backslash \mathrm{a}->\bmod \left(10^{\wedge} \mathrm{a}\right)$ 13) [1..12]

Problems 26 - Order finding example

So now the problem is. Compute the order of numbers $n<1000$ and return the one that have maximum order - -modulo, current order
order : : Integer $\rightarrow>$ Integer $->$ Integer
order a ord
$\mid \bmod \left(10^{-}\right.$ord) $a==1=$ ord
\mid ord $>a=0$
| otherwise $=$ order a (ord+1)
$\operatorname{maxo}=$ fst $\$$ maximumBy comparing $\$ \mathrm{pp}$
where
$\begin{aligned} & \text { comparing }=\left(\backslash(m, n)(p, q)->n{ }^{\prime} \operatorname{compare}^{\prime} q\right) \\ & p p= \operatorname{map}(\backslash x->(x, \operatorname{order} x 1)) \\ &(f i l t e r(\backslash x->\bmod x 10>0)[1,3.1000])\end{aligned}$

Thank you

[^0]: ${ }^{1}$ templates with type inference
 ${ }^{2}$ Interfaces

[^1]: ${ }^{3}$ https://www.haskell.org/platform/index.html
 http://tryhaskell.org/

[^2]: ${ }^{5}$ Here for more informations: https://wiki.haskell.org/Let_vs_Where

